Soliton and antisoliton resonant interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 206223
(http://iopscience.iop.org/0305-4470/20/18/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 12:12

Please note that terms and conditions apply.

Soliton and antisoliton resonant interactions

M Musette ${ }^{\dagger}$, F Lambert and J C Decuyper
Theoretical Physics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

Received 15 April 1987

Abstract. Using the Hirota formalism, Gibbon et al have shown that the evolution equation

$$
u_{t}+u_{\checkmark}-u_{\mathrm{w}, 1}+\left(4 u^{2}+2 y_{v_{2}}\right)_{1}=0
$$

with $u=y_{1}=z_{\mathrm{v}}$, has the same solitary wave as the regularised long wave (RLW) equation

$$
u_{1}+u_{v}-u_{v x}+6\left(u^{2}\right)_{x}=0
$$

and an exact two-soliton solution describing the elastic collision of two sech ${ }^{2}$ profile solitary waves. Performing a more detailed analysis, we show that the two-soliton solution can also represent other processes like the resonant or the singular collision of two RLw-type solitary waves. The interaction type depends on the values of a characteristic parameter of the solution. We also prove that with the bilinear form associated with the evolution equation, a three-soliton solution of the Hirota type cannot exist.

We then study the equation

$$
u_{t}+u_{v}-u_{w}+3\left(u^{2}\right)_{v}+6 u_{t} z_{v}=0
$$

with $u=z_{t}$, associated with another bilinear form, which has the same solitary wave as the evolution equation. We prove the existence of N-soliton solutions, for arbitrary N, and analyse the behaviour of the solitonic solutions. As in the first case, the two-soliton solution can describe elastic, resonant or singular interaction of two RLw-type solitary waves. A remarkable feature of the resonant triad is that it always involves one positive and two negative waves. This triad corresponds to a fundamental vertex for the analysis of the elastic soliton-antisoliton interaction.

1. Introduction

The regularised long-wave (RLw) equation first suggested by Peregrine (1966) and
Benjamin et al (1972)

$$
\begin{equation*}
u_{t}+u_{x}-u_{x x t}+6\left(u^{2}\right)_{x}=0 \tag{1}
\end{equation*}
$$

has been introduced as an alternative model to the Korteweg-de Vries (KdV) equation for describing non-linear evolution of unidirectional long waves.

Equation (1) has a solitary wave of sech^{2} profile

$$
\begin{equation*}
u_{\mathrm{s}}=\frac{1}{4} k w \operatorname{sech}^{2}\left[\frac{1}{2}(\theta+\tau)\right] \tag{2}
\end{equation*}
$$

with $w=k\left(1-k^{2}\right)^{-1}$ where $|k| \neq 1, \theta=-k x+w t$ and τ is a real constant but, contrary to the Kdv-type solitary wave, its amplitude is not always positive for all values of the parameter k.

[^0]Furthermore, an analytic two-soliton solution, as currently understood, does not exist (Olver (1979) has proved that Rlw has only three conservation laws).

Using the Hirota $(1976,1980)$ method, Gibbon et al $(1976) \dagger$ derived an equation which has a solitary wave of the same functional form as (2) as well as an exact two-soliton solution. This equation (MRLw I) is:

$$
\begin{equation*}
u_{1}+u_{x}-u_{x x 1}+4\left(u^{2}+2 y_{x} z_{t}\right)_{x}=0 \tag{3}
\end{equation*}
$$

where $u=y_{1}=z_{x}$ and possesses solutions of the form

$$
\begin{equation*}
u=-\partial_{x,}^{2} \ln f(x, t) \tag{4}
\end{equation*}
$$

The solitary wave solution corresponds to

$$
\begin{equation*}
f \equiv f^{(1)}=1+\mathrm{e}^{\varphi} \quad \varphi=\theta+\tau . \tag{5}
\end{equation*}
$$

The two-soliton solution is associated with

$$
\begin{equation*}
f \equiv f^{(2)}=1+\mathrm{e}^{\varphi_{1}}+\mathrm{e}^{\varphi_{2}}+K_{12} \mathrm{e}^{\varphi_{1}+\varphi_{2}} \tag{6}
\end{equation*}
$$

where $\varphi_{i}=\theta_{i}+\tau_{i}, \tau_{i} \in R, \theta_{i}=-k_{i} x+w_{i} t, w_{i}=k_{i}\left(1-k_{i}^{2}\right)^{-1}$ and K_{12} is a function of k_{1} and k_{2} of the form

$$
\begin{equation*}
K_{12}=\frac{\left(k_{1}-k_{2}\right)^{2}\left(1+k_{1} k_{2}\right)\left(3+k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}\right)}{\left(k_{1}+k_{2}\right)^{2}\left(1-k_{1} k_{2}\right)\left(3-k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}\right)} . \tag{7}
\end{equation*}
$$

Gibbon et al (1976) discuss this solution in a particular region of the (k_{1}, k_{2}) plane ($K_{12}>0$), where it describes the elastic collision of solitary waves with positive amplitudes (solitons). However, they do not mention that K_{12} can also be negative: it vanishes (or becomes infinite) on some particular curves (figure 1). When the vanishing of K_{12} is due to a resonance $\left(3+k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}=0\right)$, the solution is found to represent

Figure 1. Inside the shaded regions, K_{12} is strictly positive. On the boundary $\overparen{\mathrm{DAB}}$ belonging to the ellipse E_{1}, K_{12} is equal to zero, while on the curve $\overparen{D P}$ belonging to the ellipse E_{2} and on the branch CPC^{\prime} of the hyperbole H_{1}, the inverse of K_{12} is zero. $E_{1} \equiv$ $3+k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}=0 . \quad E_{2} \equiv 3-k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}=0 . \quad H_{1} \equiv 1-k_{1} k_{2}=0$.

[^1]an inelastic process in which two solitary waves (one with a positive amplitude (soliton) and one with a negative amplitude (antisoliton)) fuse into a third wave with negative amplitude, or the reverse process (decay). The same two processes can be described by a two-soliton solution with $3-k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}=0\left(\left(K_{12}\right)^{-1}=0\right)$. We show that the mrlw I equation (3) does not possess three-soliton solutions of the Hirota type (§ 2).

In §3, we propose a new equation (MRLW II) which has the same solitary wave solution as equations (1) and (3). We prove that this equation possesses N-soliton solutions for arbitrary N. It also possesses resonant solutions which, at $N=2$, describe the same inelastic processes as those obtained with the mrLw I equation (§4.1). They also occur on the elliptic curves $3 \pm k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}=0$. These special solutions (and those obtained with equation (3)) are examples of resonant triads in one space dimension involving both solitons and antisolitons. They can be considered as a fundamental entity (vertex) for a detailed analysis of an elastic soliton-antisoliton collision (see §4.2). We distinguish two basic processes (figure 5), each of which involves an 'intermediate antisoliton' with a lifetime proportional to $\left|\ln K_{12}\right|$. The possible occurrence of such an intermediate well (and the fact that it does not occur when a soliton collides with another soliton) might be of interest when mrLw solutions are compared with numerical results for the RLw equation (Abdulloev et al 1976, Eilbeck and McGuire 1977, Santarelli 1978, Courtenay Lewis and Tjon 1979, Bona et al 1980, 1985).

A general discussion of the resonance phenomenon for the MRLw II equation at arbitrary N shows that a regular solution cannot include other vertices than those obtained at $N=2$ (when $N \geqslant 3$, the solutions involve a resonant triad plus $N-2$ or $N-3$ 'spectator' solitary waves (see § 4.3)).

2. First modified rlw equation (mrlw I)

Given the linear part of equation (1), Gibbon et al (1976) consider the Hirota polynomial

$$
\begin{equation*}
F\left(D_{t}, D_{x}\right)=D_{t}\left(D_{t}+D_{x}-D_{t} D_{x}^{2}\right) \tag{8}
\end{equation*}
$$

where the derivative operators D_{t} and D_{x} are defined by their action on an ordered pair of functions

$$
\begin{align*}
& D_{x} \tau_{1}(x, t) \tau_{2}(x, t)=\lim _{\eta \rightarrow 0} \frac{\partial}{\partial \eta} \tau_{1}(x+\eta, t) \tau_{2}(x-\eta, t) \\
& D_{t} \tau_{1}(x, t) \tau_{2}(x, t)=\lim _{\eta \rightarrow 0} \frac{\partial}{\partial \eta} \tau_{1}(x, t+\eta) \tau_{2}(x, t-\eta) \tag{9}
\end{align*}
$$

This polynomial operator acting on an ordered pair of two identical functions $\left(\tau_{1}=\tau_{2}=\right.$ f) yields the bilinear equation

$$
\begin{equation*}
D_{t}\left(D_{i}+D_{x}-D_{i} D_{x}^{2}\right) f(x, t) \cdot f(x, t)=0 \tag{10}
\end{equation*}
$$

that is,

$$
\begin{equation*}
-f f_{t u x x}+f f_{t I}+f f_{t x}-f_{i}^{2}-f_{t} f_{x}+2 f_{I} f_{t x x}+2 f_{x} f_{t u x}-2 f_{t x}^{2}-f_{x x} f_{t I}=0 \tag{11}
\end{equation*}
$$

Equation (3) is obtained by making the transformation $f=\exp (q)$ in (11) and replacing $q_{x t}$ by $-u$ in this result, as suggested by relation (4).

According to (9), the operator (8) acts in a simple way on an exponential or on ordered pairs of exponentials with arguments linear in x and t :

$$
\begin{align*}
& F\left(D_{i}, D_{x}\right) 1 \cdot \exp \left(\theta_{i}\right)=F\left(D_{i}, D_{x}\right) \exp \left(\theta_{i}\right) \cdot 1=F\left(w_{i}, k_{i}\right) \exp \left(\theta_{i}\right) \tag{12}\\
& F\left(D_{i}, D_{x}\right) \exp \left(\theta_{i}\right) \cdot \exp \left(\theta_{i}\right)=F\left(w_{i}-w_{j}, k_{i}-k_{j}\right) \exp \left(\theta_{i}+\theta_{j}\right)
\end{align*}
$$

It is then easy to verify that the one-soliton form (5) is a solution of equation (10). Indeed, the function

$$
\begin{equation*}
F(w, k)=w\left(w-k-w k^{2}\right) \tag{13a}
\end{equation*}
$$

is identical to zero as a result of the 'dispersion' relation between w and k

$$
\begin{equation*}
w(k)=k\left(1-k^{2}\right)^{-1} \tag{13b}
\end{equation*}
$$

Using (12) and (13a), it is also easy to prove that the two-soliton form (6) is a solution of (10) provided that

$$
\begin{equation*}
K_{12}=-F\left(w_{1}-w_{2}, k_{1}-k_{2}\right) / F\left(w_{1}+w_{2}, k_{1}+k_{2}\right) \tag{14}
\end{equation*}
$$

where $w_{i}=w\left(k_{i}\right), i=1,2$. In the particular case (13a) and (13b), K_{12} takes the explicit form (7).

The existence of a three-soliton form
$f \equiv f^{(3)}=1+\sum_{i=1}^{3} \exp \left(\varphi_{i}\right)+\sum_{i \leqslant i<j \leqslant 3} K_{i j} \exp \left(\varphi_{i}+\varphi_{j}\right)+K_{123} \exp \left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)$
(where $\varphi_{i}=\theta_{i}+\tau_{i}, i=1,2,3$, and $K_{i j}$ are obtained from formula (7) by setting $1=i$ and $2=j$) as a solution of equation (10), is subject to two additional constraints to cancel the coefficients of $\exp \left(2 \varphi_{i}+\varphi_{j}+\varphi_{1}\right)$ for $i \neq j \neq l$ and $\exp \left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)$ in the LHS of equation (10):
(i) $K_{123}=K_{12} K_{13} K_{23}$
(ii) $\sum_{\substack{\left\{\mu_{i}= \pm 1\right\} \\ 1 \leqslant i \leqslant 3}} F\left(\sum_{i=1}^{3} \mu_{i} w_{i}, \sum_{i=1}^{3} \mu_{i} k_{i}\right)$

$$
\begin{equation*}
\times \prod_{1 \leqslant l<m \leqslant 3} F\left(\mu_{l} w_{l}-\mu_{m} w_{m}, \mu_{l} k_{l}-\mu_{m} k_{m}\right) \mu_{l} \mu_{m}=0 \tag{17}
\end{equation*}
$$

(the coefficients of other exponential terms are identically zero on account of relations (12) and (13a)).

The latter condition (17), which involves the actual form of F, cannot be satisfied when $F(w, k)$ has the form ($13 a$). Indeed, setting

$$
\begin{align*}
I\left(k_{1}, k_{2}, k_{3}\right)= & \left(\sum_{\text {cycili23) }} k_{1}\left(1-k_{2}^{2}\right)\left(1-k_{3}^{2}\right)\right)\left(\sum_{\operatorname{cycli} 123)}\left(1-k_{1}^{2}\right)\left(1-k_{2} k_{3}\right)\right) \\
& \times \prod_{1 \leqslant 1<j \leqslant 3}\left(1+k_{i} k_{j}\right)\left(k_{i}-k_{j}\right)\left(3+k_{i} k_{j}-k_{i}^{2}-k_{j}^{2}\right) \tag{18}
\end{align*}
$$

the Lhs of relation (17) is equivalent to

$$
\begin{equation*}
\frac{k_{1}^{2} k_{2}^{2} k_{3}^{2}\left(k_{1}^{2}-k_{2}^{2}\right)\left(k_{1}^{2}-k_{3}^{2}\right)\left(k_{2}^{2}-k_{3}^{2}\right)}{\left[\left(1-k_{1}^{2}\right)\left(1-k_{2}^{2}\right)\left(1-k_{3}^{2}\right)\right]^{6}} \hat{I}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}\right) \tag{19}
\end{equation*}
$$

where
$\hat{I}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}\right)=I\left(k_{1}, k_{2}, k_{3}\right)+I\left(-k_{1}, k_{2}, k_{3}\right)+I\left(k_{1},-k_{2}, k_{3}\right)+I\left(k_{1}, k_{2},-k_{3}\right)$.

Using macsuma, it is found that in the (k_{1}, k_{2}, k_{3}) space

$$
\begin{aligned}
\hat{I}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}\right)= & 4 k_{1}^{2} k_{2}^{2} k_{3}^{2}\left(k_{1}^{2}-k_{2}^{2}\right)\left(k_{1}^{2}-k_{3}^{2}\right)\left(k_{2}^{2}-k_{3}^{2}\right) \\
& \times\left(2 k_{1}^{2}+2 k_{2}^{2}+2 k_{3}^{2}-k_{1}^{2} k_{2}^{2}-k_{1}^{2} k_{3}^{2}-k_{2}^{2} k_{3}^{2}-3\right) \\
& \times\left(k_{1}^{2} k_{2}^{2} k_{3}^{4}+k_{1}^{2} k_{2}^{4} k_{3}^{2}+k_{1}^{4} k_{2}^{2} k_{3}^{2}-6 k_{1}^{2} k_{2}^{2} k_{3}^{2}-k_{1}^{4}-k_{2}^{4}-k_{3}^{4}\right. \\
& \left.-k_{1}^{2} k_{2}^{2}-k_{1}^{2} k_{3}^{2}-k_{2}^{2} k_{3}^{2}+6 k_{1}^{2}+6 k_{2}^{2}+6 k_{3}^{2}-9\right) .
\end{aligned}
$$

3. Second modified rlw equation (mrlw II)

Another bilinear equation associated with the linear part of equation (1) is

$$
\begin{equation*}
D_{x}\left(D_{1}+D_{x}-D_{l} D_{x}^{2}\right) f(x, t) \cdot f(x, t)=0 \tag{20a}
\end{equation*}
$$

which is equivalent to the following quadratic equation in f :

$$
\begin{equation*}
f f_{x x}+f f_{x t}-f f_{x x x t}+3 f_{x} f_{x x t}-3 f_{x x} f_{x t}+f_{x x x} f_{t}-f_{x}^{2}-f_{x} f_{t}=0 . \tag{20b}
\end{equation*}
$$

By taking relation (4) into account, we obtain for u the evolution equation (MRLW II)

$$
\begin{equation*}
u_{t}+u_{x}-u_{x x t}+3\left(u^{2}\right)_{x}+6 u_{t} z_{x}=0 \quad z_{t}=u \tag{21}
\end{equation*}
$$

The polynomial in w and k associated with the differential operator of equation (20a) is

$$
\begin{equation*}
F_{11}(w, k)=k\left(w-k-k^{2} w\right) . \tag{22}
\end{equation*}
$$

It follows from (12) and (13b) that equation (21) has (just as equation (3)) the same solitary wave as the RLw equation and two-soliton solution of the form (6) with

$$
\begin{equation*}
K_{12}=-\frac{F_{1 I}\left(w_{1}-w_{2}, k_{1}-k_{2}\right)}{F_{11}\left(w_{1}+w_{2}, k_{1}+k_{2}\right)}=\frac{\left(k_{1}-k_{2}\right)^{2}\left(3+k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}\right)}{\left(k_{1}+k_{2}\right)^{2}\left(3-k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}\right)} . \tag{23}
\end{equation*}
$$

Furthermore, we shall prove that (21) possesses N-soliton solutions (for arbitrary $N>2$) of the form

$$
u^{(N)}(x, t)=-\partial_{x t}^{2} \ln f^{(N)}(x, t)
$$

with

$$
\begin{align*}
f^{(N)}(x, t)=1 & +\sum_{i=1}^{N} \exp \left(\varphi_{i}\right)+\sum_{i \leqslant i<j \leqslant N} K_{i j} \exp \left(\varphi_{1}+\varphi_{j}\right) \\
& +\sum_{1 \leqslant i<j<1 \leqslant N} K_{i j} K_{i l} K_{j l} \exp \left(\varphi_{i}+\varphi_{j}+\varphi_{i}\right)+\ldots \\
& +\left(\prod_{1 \leqslant i<j \leqslant N} K_{i j}\right) \exp \left(\sum_{i=1}^{N} \varphi_{i}\right) \tag{24}
\end{align*}
$$

where $\varphi_{i}=-k_{t} x+w_{i} t+\tau_{i}, w_{i}=k_{t}\left(1-k_{i}^{2}\right)^{-1}, \tau_{i} \in R$ and

$$
K_{t j}=\frac{\left(k_{i}-k_{j}\right)^{2}\left(3+k_{1} k_{j}-k_{i}^{2}-k_{j}^{2}\right)}{\left(k_{i}+k_{j}\right)^{2}\left(3-k_{1} k_{j}-k_{i}^{2}-k_{j}^{2}\right)} \quad 1 \leqslant i<j \leqslant N .
$$

In fact, we should mention that the bilinear equation (20) has already been considered by Hirota and Satsuma (1976) but in relation with the evolution equation for the field $r(x, t)$ linked to $f(x, t)$ by $r(x, t)=2 \partial_{x x}^{2} \ln f(x, t)$. Their equation

$$
\begin{equation*}
r_{t}+r_{x}-r_{x x t}-3 r r_{t}+3 r_{x} z_{t}=0 \quad r=-z_{x} \tag{25}
\end{equation*}
$$

differs from (21) by its non-linear part; its solitary wave solutions have always a positive amplitude (no antisolitons). Hirota and Satsuma claimed that (25) possesses N-soliton solutions. As we have been unable to find a published proof, we shall now show that both (21) and (25) have N-soliton solutions.

The condition for the existence of a N-soliton solution

$$
\begin{align*}
& Q^{(n)}\left(k_{1}, k_{2}, \ldots, k_{n}\right)=\sum_{\substack{\left\{\mu_{1}= \pm 1\right\} \\
1 \leqslant i \leqslant n}} F\left(\sum_{i=1}^{n} \mu_{i} w_{i}, \sum_{i=1}^{n} \mu_{i} k_{i}\right) \\
& \times \prod_{1 \leqslant i<j \leqslant n} F\left(\mu_{i} w_{i}-u_{j} w_{j}, \mu_{i} k_{i}-\mu_{j} k_{j}\right) \mu_{i} \mu_{j} \\
&= \prod_{i=1}^{n}\left[k_{i}^{n-1} /\left(1-k_{i}^{2}\right)^{n-1}\right] \hat{Q}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{n}\right) \\
&=0 \quad \text { for } \quad n=1,2, \ldots, N \tag{26}
\end{align*}
$$

amounts to the condition

$$
\begin{gather*}
\hat{Q}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{n}\right)=\sum_{\substack{\left\{\mu_{i}=+1\right\} \\
1 \leqslant i \leqslant n}}\left(\sum_{i=1}^{n} \mu_{i} k_{i}\right)\left\{\left[\left(\sum_{i=1}^{n} \mu_{i} k_{i}\right)^{2}-1\right] \sum_{i=1}^{n} \mu_{i} w_{i}+\sum_{i=1}^{n} \mu_{i} k_{i}\right\} \\
\times \prod_{1 \leqslant i<j \leqslant n}\left(\mu_{i} k_{i}-\mu_{j} k_{j}\right)^{2}\left(3+\mu_{i} \mu_{j} k_{i} k_{j}-k_{i}^{2}-k_{j}^{2}\right) \\
=0 \quad \text { for } \quad n=1,2, \ldots, N \tag{27}
\end{gather*}
$$

which is proved by the following mathematical induction.
The function $\hat{Q}^{(n)}$ has the properties:
(i) $\hat{Q}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ is a symmetric function of $k_{1}^{2}, k_{2}^{2}, \ldots, k_{n}^{2}$
(ii) $\left.\hat{Q}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right|_{k_{1}=0}=\prod_{i=2}^{n} k_{i}^{2}\left(3-k_{i}^{2}\right) \hat{Q}^{(n-1)}\left(k_{2}, k_{3}, \ldots, k_{n}\right)$

$$
\begin{align*}
& \left.\hat{Q}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right|_{k_{1}=k_{2}}=24 k_{1}^{2}\left(1-k_{1}^{2}\right) \prod_{j=3}^{n}\left(k_{1}^{2}-k_{j}^{2}\right)^{2} \tag{iii}\\
& \quad \times\left[\left(3-k_{1}^{2}-k_{j}^{2}\right)^{2}-k_{1}^{2} k_{j}^{2}\right] \hat{Q}^{(n-2)}\left(k_{3}, k_{4}, \ldots, k_{n}\right)
\end{align*}
$$

(iv) $\hat{Q}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{n}\right)=\left(3+k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}\right)\left(k_{1}-k_{2}\right)^{2} \hat{Q}_{1}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$

$$
+\left(3-k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}\right)\left(k_{1}+k_{2}\right)^{2} \hat{Q}_{1}^{(n)}\left(k_{1},-k_{2}, \ldots, k_{n}\right)
$$

with

$$
\begin{aligned}
\hat{Q}_{1}^{(n)}\left(k_{1}, k_{2}, \ldots\right. & \left., k_{n}\right)=2 \sum_{\substack{\left\{\mu_{1}==1\right\} \\
3 \leqslant i \leqslant n}}\left(k_{1}+k_{2}+\sum_{i=3}^{n} \mu_{i} k_{i}\right)\left\{\left[\left(k_{1}+k_{2}+\sum_{i=3}^{n} \mu_{i} k_{i}\right)^{2}-1\right]\right. \\
& \left.\times\left(w_{1}+w_{2}+\sum_{i=3}^{n} \mu_{i} w_{i}\right)+k_{1}+k_{2}+\sum_{i=3}^{n} \mu_{i} k_{i}\right\} \\
& \times \prod_{i=3}^{n}\left(k_{1}-\mu_{i} k_{i}\right)^{2}\left(k_{2}-\mu_{i} k_{i}\right)^{2}\left(3+\mu_{i} k_{1} k_{i}-k_{1}^{2}-k_{1}^{2}\right) \\
& \times\left(3+\mu_{i} k_{2} k_{1}-k_{2}^{2}-k_{i}^{2}\right) \\
& \times \prod_{3 \leqslant i<j \leqslant n}\left(\mu_{i} k_{i}-\mu_{j} k_{j}\right)^{2}\left(3+\mu_{i} \mu_{j} k_{i} k_{j}-k_{i}^{2}-k_{j}^{2}\right) .
\end{aligned}
$$

On the other hand, we see that on the curve $3-k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}=0$, the following relations are satisfied:
(a) $w_{1}+w_{2}=w\left(k_{1}+k_{2}\right)$
(b) $\left(k_{1}-\mu_{i} k_{i}\right)^{2}\left(k_{2}-\mu_{i} k_{i}\right)^{2}\left(3+\mu_{i} k_{i} k_{1}-k_{1}^{2}-k_{i}^{2}\right)\left(3+\mu_{i} k_{i} k_{2}-k_{2}^{2}-k_{i}^{2}\right)$

$$
\begin{aligned}
= & {\left[\left(k_{1}+k_{2}\right)-\mu_{i} k_{i}\right]^{2}\left(\left[k_{i}^{2}+\left(k_{1}+k_{2}\right)^{2}-3\right]^{2}-k_{i}^{2}\left(k_{1}+k_{2}\right)^{2}\right) } \\
& \times\left[-3+\left(k_{1}+k_{2}\right)^{2}+k_{i}^{2}-\mu_{i} k_{i}\left(k_{1}+k_{2}\right)\right] \quad 3 \leqslant i \leqslant n .
\end{aligned}
$$

It follows from the above relations that (on the curve $3-k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}=0$)

$$
\begin{align*}
\hat{Q}^{(n)}\left(k_{1}, k_{2}, \ldots,\right. & \left.k_{n}\right)\left.\right|_{3-k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}=0}=-\left(3+k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}\right)\left(k_{1}-k_{2}\right)^{2} \\
& \times \prod_{i=3}^{n}\left(\left[k_{1}^{2}+\left(k_{1}+k_{2}\right)^{2}-3\right]^{2}-k_{i}^{2}\left(k_{1}+k_{2}\right)^{2}\right) \hat{Q}^{(n-1)}\left(k_{1}+k_{2}, k_{3}, \ldots, k_{n}\right) . \tag{28}
\end{align*}
$$

The identity (27) is easily verified for $n=1$ and $n=2$:
$\hat{Q}^{(1)}\left(k_{1}\right)=F\left(w_{1}, k_{1}\right)=0$

$$
\begin{aligned}
\hat{Q}^{(2)}\left(k_{1}, k_{2}\right)= & \frac{\left(1-k_{1}^{2}\right)\left(1-k_{2}^{2}\right)}{k_{1} k_{2}}\left[F\left(w_{1}+w_{2}, k_{1}+k_{2}\right) F\left(w_{1}-w_{2}, k_{1}-k_{2}\right)\right. \\
& \left.-F\left(w_{1}-w_{2}, k_{1}-k_{2}\right) F\left(w_{1}+w_{2}, k_{1}+k_{2}\right)\right]=0 .
\end{aligned}
$$

We now assume that this identity holds for $n-1$ and $n-2(n \geqslant 3)$. Then, by using the properties (i), (ii) and (iii) and the result (28), we obtain the factorisation:

$$
\begin{gather*}
\hat{Q}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{n}\right)\left(\prod_{i=1}^{n} k_{i}^{2} \prod_{1 \leqslant i<j \leqslant n}\left(k_{i}^{2}-k_{j}^{2}\right)^{2}\left(3-k_{i} k_{j}-k_{i}^{2}-k_{j}^{2}\right)\right. \\
\left.\times\left(3+k_{i} k_{j}-k_{i}^{2}-k_{j}^{2}\right)\right)^{-1} \tag{29}
\end{gather*}
$$

which is also valid for the polynomial $\hat{D}^{(n)}$

$$
\begin{equation*}
\hat{D}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{n}\right)=\hat{Q}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{n}\right) \prod_{i=1}^{n}\left(1-k_{i}^{2}\right) . \tag{30}
\end{equation*}
$$

Thus, according to the form of $\hat{Q}^{(n)}$ (see relation (27)) and the factorisation property (29), we see that the degree of the polynomial $\hat{D}^{(n)}$ is bounded as follows:

$$
\begin{equation*}
2 n(2 n-1)<\text { degree } \hat{D}^{(n)}<2 n^{2}+2 \tag{31}
\end{equation*}
$$

These inequalities imply that $\hat{D}^{(n)} \equiv 0$.

4. Resonant multisoliton interaction for mrlw II

If regular, the N-soliton solution (24) of (21) can describe two kinds of interactions (depending on the values of the parameters k_{i}).
(i) An ordinary multisoliton interaction (elastic interaction) involving an arbitrary number N of solitons or antisolitons.
(ii) A resonant interaction involving a resonant triad (one soliton and two antisolitons) in the presence of $N-2$ (or $N-3$) 'spectator' solitons (antisolitons).

As has already been pointed out (Tajiri and Nishitani 1982, Hirota and Ito 1983, Lambert et al 1987), the resonant interaction of solitons in one space dimension occurs on the boundaries of the regularity domain of the solution.

4.1. The two-soliton solution

The regularity condition for the two-soliton solution given by the relations (4) and (6) is

$$
\begin{equation*}
K_{12}=\frac{\left(k_{1}-k_{2}\right)^{2}\left(3+k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}\right)}{\left(k_{1}+k_{2}\right)^{2}\left(3-k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}\right)} \geqslant 0 . \tag{32}
\end{equation*}
$$

The corresponding regions in the first quadrant of the (k_{1}, k_{2}) plane are shown in figure 2 (without any loss of generality, we assume $k_{2}>k_{1}>0$). Inside the shaded regions, the solution $u^{(2)}$ describes the elastic soliton-soliton collision (if $k_{1}<k_{2}<1$), antisoliton-antisoliton collision (if $1<k_{1}<k_{2}$) or soliton-antisoliton collision (if $k_{1}<$ $1<k_{2}$). More particularly, we distinguish the following cases.
(i) If $k_{2}<1$ or $k_{2}>2$, the interaction between the two solitary waves is always elastic.
(ii) If $1<k_{2}<2$, the curves \triangle DAB and $\widehat{\mathrm{DP}}$, on which $K_{12}=0$ or $\left(K_{12}\right)^{-1}=0$, are the boundaries of the regularity domain of the two-soliton solution.

Setting $k_{\mathrm{R}}^{ \pm}=k_{2} \pm k_{1}$ and $w_{12}^{ \pm}=w_{2} \pm w_{1}$, one can see, on the curve $\overparen{\mathrm{DP}}$, where

$$
\begin{equation*}
E_{2}\left(k_{1}, k_{2}\right) \equiv 3-k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}=0 \tag{33}
\end{equation*}
$$

that $w_{12}^{+}=w\left(k_{\mathrm{R}}^{+}\right)$. This follows from the identity

$$
\begin{equation*}
w_{12}^{ \pm}-k_{\mathrm{R}}^{ \pm}-\left(k_{\mathrm{R}}^{ \pm}\right)^{2} w_{12}^{ \pm}=\frac{\mp k_{1} k_{2}\left(k_{2} \pm k_{1}\right)\left(3 \mp k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}\right)}{\left(1-k_{1}^{2}\right)\left(1-k_{2}^{2}\right)} \tag{34}
\end{equation*}
$$

In the same way, it follows from this identity that on the curve $\overparen{\mathrm{DAB}}$, where

$$
\begin{equation*}
E_{1}\left(k_{1}, k_{2}\right) \equiv 3+k_{1} k_{2}-k_{1}^{2}-k_{2}^{2}=0 \tag{35}
\end{equation*}
$$

we have $w_{12}^{-}=w\left(k_{\mathrm{R}}^{-}\right)$.

Figure 2. Inside the shaded regions, K_{12} is strictly positive. On the boundary $\overparen{D A B}$, belonging to the ellipse E_{1}, K_{12} is equal to zero, while on the curve $\overparen{\mathrm{DP}}$, belonging to the ellipse E_{2}, the inverse of K_{12} is zero.

Thus, on the curve $\overparen{D P}$, we have the relations

$$
\begin{align*}
& k_{\mathrm{R}}^{+}=k_{1}+k_{2} \tag{36}\\
& w_{\mathrm{R}}^{+}=w_{1}+w_{2}
\end{align*}
$$

while on the curve $\overparen{\mathrm{DAB}}$, we have

$$
\begin{align*}
& k_{2}=k_{\mathrm{R}}^{-}+k_{1} \tag{37}\\
& w_{2}=w_{\mathrm{R}}^{-}+w_{1} .
\end{align*}
$$

Taking $\sqrt{ } 3 \leqslant k_{2} \leqslant 2$, the points situated on $\overparen{\text { DAB }}$ correspond to $\left(k_{1}=k_{2, \pm}, k_{2}\right)$ with

$$
\begin{equation*}
k_{2, \pm}=\frac{1}{2}\left\{k_{2} \pm\left[3\left(4-k_{2}^{2}\right)\right]^{1 / 2}\right\} . \tag{38}
\end{equation*}
$$

We distinguish two possibilities.

$$
\begin{array}{lr}
\text { (i) } 0<k_{1}=k_{2,-}<1 \quad \text { which implies } & 1<k_{\mathrm{R}}^{-}=k_{2,+}<\sqrt{ } 3 \tag{39}\\
\text { and the ordering (see figure 3) } & v_{1}>0>v_{2}>v_{\mathrm{R}}^{-}
\end{array}
$$

where $v_{i}=1 /\left(1-k_{i}^{2}\right)$ stands for the phase velocity w_{i} / k_{i}.
(ii) $1<k_{1}=k_{2,+}<\sqrt{ } 3 \quad$ which implies $0<k_{\mathrm{R}}^{-}=k_{2,-}<1$ and the ordering $\quad v_{\mathrm{R}}^{-}>0>v_{2}>v_{1}$.
In the first case, the solution $u^{(2)}=-\partial_{x t}^{2} \ln f^{(2)}(x, t)$ with

$$
\begin{equation*}
f^{(2)}=1+\mathrm{e}^{\theta_{1}+\tau_{1}}+\mathrm{e}^{\theta_{2}+\tau_{2}} \tag{41}
\end{equation*}
$$

describes the decay of an antisoliton (with parameter $\sqrt{ } 3<k_{2}<2$) into a soliton and an antisoliton which travel in opposite directions with parameters $0<k_{2,-}<1$ and $1<k_{2,+}<\sqrt{ } 3$ satisfying the relation $k_{2}=k_{2,+}+k_{2,-}$ (see figure $4(a)$). As $t \rightarrow-\infty$

$$
\begin{equation*}
u^{(2)}(x, t) \approx \frac{k_{2} w_{2}}{4} \operatorname{sech}^{2}\left[\frac{1}{2}\left(\theta_{2}+\tau_{2}\right)\right] \tag{42}
\end{equation*}
$$

and as $t \rightarrow+\infty$

$$
\begin{equation*}
u^{(2)}(x, t) \approx \frac{k_{1} w_{1}}{4} \operatorname{sech}^{2}\left[\frac{1}{2}\left(\theta_{1}+\tau_{1}\right)\right]+\frac{k_{\mathrm{R}}^{-} w_{\mathrm{R}}^{-}}{4} \operatorname{sech}^{2}\left[\frac{1}{2}\left(\theta_{\mathrm{R}}^{-}+\tau_{2}-\tau_{1}\right)\right] \tag{43}
\end{equation*}
$$

with $k_{1}=k_{2,-}$ and $k_{\mathrm{R}}^{-}=k_{2,+}$.

Figure 3. The curve represents the function $v(k)=\left(1-k^{2}\right)^{-1}$ in terms of k, for $k>0$. The value of k_{2} is 1.95 .

Figure 4. This figure represents the time evolution of the two-soliton solution for $K_{12}=0$ ($k_{2}=1.95$). In (a) $\left(k_{1}=k_{2,-}=0.59\right)$, the process corresponds to the decay of an antisoliton (with amplitude $A_{2}=-0.34$) into a pair soliton-antisoliton (with amplitudes $A_{1}=0.13$ and $\left.A_{R}=-0.54\right)$. In (b) $\left(k_{1}=k_{2,+}=1.36\right)$, the process corresponds to the fusion of a pair soliton-antisoliton (with amplitudes $A_{\mathrm{R}}=0.13$ and $A_{1}=-0.54$) into an antisoliton ($A_{2}=$ $-0.34)$. The reference frame is defined by $\xi=x-v_{2} t(-60 \leqslant \xi \leqslant 60)$.

In the second case, the solution $u^{(2)}$ describes the fusion of a soliton and an antisoliton (which travel in opposite directions with parameters $k_{2,-}$ and $k_{2,+}$) into an antisoliton k_{2} (see figure $4(b)$).

In both cases, the total mass $M=w_{2}$, which is conserved by the non-linear interaction, is negative.

Taking $1 \leqslant k_{2} \leqslant \sqrt{ } 3$, the points situated on $\overparen{\mathrm{DP}}\left(\left(K_{12}\right)^{-1}=0\right)$ correspond to ($k_{1}=$ $\left.\left|k_{2,-}\right|, k_{2}\right)$ with

$$
\left|k_{2,-}\right|=\frac{1}{2}\left\{-k_{2}+\left[3\left(4-k_{2}^{2}\right)\right]^{1 / 2}\right\} .
$$

In this case, one has $0<k_{1}=\left|k_{2 .-}\right|<1, \sqrt{ } 3<k_{R}^{+}=k_{2 .+}<2$ and the ordering $v_{1}>0>v_{R}^{+}>$ v_{2}.

It is easy to see that, with an appropriate choice of the phase parameters τ_{1} and τ_{2}, the solution $u^{(2)}$, with $k_{1}=\left|k_{2,-}\right|$, also describes one of the above processes. Thus, by taking $\tau_{1}=\tau_{1}^{\prime}$ and $\tau_{2}=\tau_{2}^{\prime}-\ln K_{12}$ (τ_{1}^{\prime} and τ_{2}^{\prime} constant), one recovers the decay process of (42) and (43), whereas by taking $\tau_{1}=\tau_{1}^{\prime}-\ln K_{12}$ and $\tau_{2}=\tau_{2}^{\prime}$, one recovers the (reversed) fusion process.

4.2. Elastic processes near the boundaries of the regularity domain

The two inelastic processes shown in figure 4 correspond to solutions taken on the boundary of the regularity domain. Each such process can be represented by a diagram-a vertex joining two incoming (outgoing) lines with a third outgoing (incoming) line-which schematises this solution (contour map) in the (x, t) plane. These vertices turn out to be fundamental entities, as much as the soliton itself, for the interpretation of elastic soliton-antisoliton interactions (figure 5).

Figure 5. The time evolution of the elastic collision soliton-antisoliton is respectively schematised for (a) $K_{12} \rightarrow 0\left(\xi=x-v_{2} t, k_{2}=1.95, k_{1}=0.59\right)$ and (b) $K_{12} \rightarrow \infty\left(\xi=x-v_{\mathrm{R}} t\right.$, $\left.k_{2}=1.36, k_{1}=0.59\right) . \Delta t=t_{\max }-t_{\min }$ corresponds to the 'interaction time'.

For values of k_{1}, k_{2} situated near the boundary $\overparen{\text { DAB }}\left(K_{12} \rightarrow 0, \sqrt{3}<k_{2}<2\right.$, $k_{1} \rightarrow k_{2,-}<1$), the elastic collision of the two waves proceeds by the exchange of an intermediate antisoliton ($k_{\mathrm{R}}=k_{2,+}$), the lifetime of which is proportional to $\left|\ln K_{12}\right|$. During this 'interaction time', three separate waves coexist: one well-shaped intermediate wave (deeper than the incoming antisoliton) which travels backwards between two bell-shaped waves of equal amplitude ($k_{1} w_{1}>0$) moving forwards. A striking feature is that the two incoming waves are recovered as outgoing waves without ever colliding. They exchange identities.

For values of k_{1}, k_{2} situated near the boundary $\overparen{\mathrm{DP}}\left(\left(K_{12}\right)^{-1} \rightarrow 0,1<k_{2}<\sqrt{ } 3, k_{1} \rightarrow\right.$ $\left|k_{2,-\mid}\right|$) the two incoming waves fuse together to form an intermediate antisoliton (in depth smaller than the incoming well-shaped wave) which, after a finite interaction time proportional to $\ln K_{12}$, decays into the original soliton-antisoliton pair. During the interaction time, there is only one (intermediate) wave.

4.3. The N-soliton regular solutions

The only regular N-soliton solutions (24) are those for which at most one parameter k, is situated between 1 and $\sqrt{ } 3$ (all the k, being ordered and positive).

Assuming we have the following ordering:

$$
\begin{equation*}
k_{\mathrm{N}}>k_{\mathrm{V}-1}>\ldots>2>k_{1}>k_{l-1}>\sqrt{ } 3>k_{l-2}>1>k_{l-3}>\ldots>k_{1} \tag{44}
\end{equation*}
$$

and setting

$$
\begin{equation*}
k_{1,=}=\frac{1}{2}\left\{k_{1} \pm\left[3\left(4-k_{t}^{2}\right)\right]^{1 / 2}\right\} \quad 1 \leqslant i \leqslant N \tag{45}
\end{equation*}
$$

one has (see figure $6(a)$)

$$
\sqrt{ } 3>k_{l-1,+}>k_{l,+}>1>k_{l,-}>k_{l-1,-}
$$

and we must further have, to guarantee the regularity of the N-soliton solution ($K_{i j} \geqslant 0$ for $1 \leqslant i<j \leqslant N$), that (see figure $6(b)$)

$$
\begin{align*}
& k_{l-2} \geqslant k_{l-1,+} \tag{46}\\
& k_{l-3} \leqslant\left|k_{l-2,-,}\right| \leqslant k_{1-1, \ldots} \tag{47}
\end{align*}
$$

Figure 6. The regions in the plane $k_{1}, k_{1}\left(k_{1}<k_{1}\right)$ where $K_{1,}$ is greater than zero are bounded by the two ellipses $E_{1}\left(k_{1}, k_{1}\right)$ and $E_{2}\left(k_{1}, k_{j}\right)$. (a) $\sqrt{3}<k_{1-1}<2$. (b) $1<k_{1-2}<\sqrt{3} 3$.

The condition (46) implies that

$$
\sqrt{ } 3<k_{t-2,+} \leqslant k_{t-1} .
$$

We then distinguish four possibilities of resonant solutions.
(i) If $k_{l-2}=k_{l-1,+}\left(\right.$ and $\left.k_{l-3}<k_{l-1,-}\right)$ then $K_{l-2, I-1}=0$
(resonance involving the parameters k_{l-1}, k_{l-2} and $k_{l-1,-}$).
(ii) If $k_{l-3}=k_{l-1,-}\left(\right.$ and $\left.k_{l-2}>k_{l-1,+}\right)$ then $K_{l-3, l-1}=0$
(resonance involving the parameters $k_{1-1}, k_{l-1,+}$ and k_{l-3}).
(iii) If $k_{l-3}=\left|k_{l-2,-\mid}\right|\left(\right.$ and $\left.k_{l-2,+}<k_{l-1}\right)$ then $\left(K_{l-3, l-2}\right)^{-1}=0$
(resonance involving the parameters $k_{1-2,+}, k_{l-2}$ and k_{l-3}).
(iv) If $k_{l-2}=k_{l-1,+}$ and $k_{l-3}=k_{l-1,-}$ then $K_{l-2, l-1}=K_{l-3, l-1}=0$ and $\left(K_{l-3, l-2}\right)^{-1}=0$ (resonance involving the parameters k_{l-1}, k_{l-2} and k_{l-3}).

In the first three cases, the solution decribes an inelastic process as shown in figure 4 (with an appropriate choice of the phases τ_{l-2} and τ_{l-3} when $\left(K_{l-3, l-2}\right)^{-1}=0$) in the presence of $N-2$ 'spectators'. The resonant triad involves two waves of the sequence (44) and a third exotic wave. In the last case, the solution also describes an inelastic process of the kind discussed at $N=2$ (with an appropriate choice of the phases τ_{l-2} and τ_{l-3}) but this time in the presence of $N-3$ 'spectators'. The resonant triad involves three waves (k_{l-1}, k_{l-2} and k_{l-3}) of the sequence (44).

References

Abdulloev Kh O, Bogolubsky I L and Makhankov V G 1976 Phys. Lett. 56A 427
Benjamin T B, Bona J L and Mahony J J 1972 Phil. Trans. R. Soc. A 27247
Bona J L, Pritchard W G and Scott L R 1980 Phys. Fluids 23438

- 1985 J. Comput. Phys. 60167

Courtenay Lewis J and Tjon J A 1979 Phys. Lett. 73A 275
Eilbeck J C and McGuire G R 1977 J. Comput. Phys. 2363
Gibbon J D, Eilbeck J C and Dodd R K 1976 J. Phys. A: Math. Gen. 9 L127
Hirota R 1976 Backlund Transformations, the Inverse Scattering Method, Solitons and their Applications (Lecture Notes in Mathematics 515) ed R M Miura (Berlin: Springer) p 40

- 1980 Solitons ed R K Bullough and P J Caudrey (Berlin: Springer) p 157

Hirota R and Ito M 1983 J. Phys. Soc. Japan 52744
Hirota R and Satsuma J 1976 J. Phys. Soc. Japan Lett, 40611
Lambert F, Musette M and Kesteloot E 1987 Inverse Problems 3275
Olver P J 1979 Math. Proc. Camb. Phil. Soc. 85143
Peregrine D H 1966 J. Fluid Mech. 25321
Santarelli A R 1978 Nuovo Cimento B 46179
Tajiri M and Nishitani T 1982 J. Phys. Soc. Japan 113720

[^0]: † Research associate, National Foundation for Scientific Research, Belgium.

[^1]: +We acknowledge J Eilbeck for bringing this paper to our attention.

