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Soliton and antisoliton resonant interactions 

M Musette?, F Lambert and J C Decuyper 
Theoretical Physics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium 

Received 15  April 1987 

Abstract. Using the Hirota formalism, Gibbon et a /  have shown that the evolution equation 

U, + U, -U,,, + ( 4 ~ ’ + 2 ~ , : , ) ,  = 0 

with U = y, = z,, has the same solitary wave as the regularised long wave ( R L W )  equation 

U, i- U, - u , , , + 6 ( u 2 ) ,  = O  

and an exact two-soliton solution describing the elastic collision of two sech’ profile solitary 
waves. Performing a more detailed analysis, we show that the two-soliton solution can 
also represent other processes like the resonant or the singular collision of two RLfi-type 
solitary waves. The interaction type depends on the values of a characteristic parameter 
of the solution. We also prove that with the bilinear form associated with the evolution 
equation, a three-soliton solution of rhe Hirota type cannot exist. 

We then study the equation 

u , + u ,  - u , , , + ~ ( u ’ ) . + ~ u , z ,  = O  

with U = z,, associated with another bilinear form, which has the same solitary wave as the 
evolution equation. We prove the existence of N-soliton solutions, for arbitrary N, and 
analyse the behaviour of the solitonic solutions. As in the first case, the two-soliton solution 
can describe elastic, resonant or singular interaction of two RLw-type solitary waves. A 
remarkable feature of the resonant triad is that i t  always involves one positive and two 
negative waves. This triad corresponds to a fundamental vertex for the analysis of the 
elastic soliton-antisoliton interaction. 

1. Introduction 

The regularised long-wave ( R L W )  equation first suggested by Peregrine (1966) and 
Benjamin et a1 (1972) 

u , + u , - u , , , + ~ ( u ‘ ) , = ~  (1) 
has been introduced as an alternative model to the Korteweg-de Vries ( K d v )  equation 
for describing non-linear evolution of unidirectional long waves. 

Equation (1) has a solitary wave of sech’ profile 

U, = i k w  sech2[i( 19 + 7)] (2) 

with w = k ( 1 -  k’1-I where Ik/ # 1, 8 = - k x +  wt and T is a real constant but, contrary 
to the Kdv-type solitary wave, its amplitude is not always positive for all values of the 
parameter k. 

t Research associa:e, National Foundation for Scientific Research, Belgium. 
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6224 M Musette, F Lambert and J C Decuyper 

Furthermore, an analytic two-soliton solution, as currently understood, does not 
exist (Olver (1979) has proved that R L W  has only three conservation laws). 

Using the Hirota (1976, 1980) method, Gibbon er a1 (1976)t derived an equation 
which has a solitary wave of the same functional form as (2)  as well as an exact 
two-soliton solution. This equation ( M R L W  I )  is: 

U , + U ~ - U , , , + ~ ( U ~ + ~ ~ ~ Z , ) . = O  (3) 

U =-at, Inf(x, t ) .  (4) 

where U = y ,  = z, and possesses solutions of the form 

The solitary wave solution corresponds to 

fif"'= 1+e' cp=e+r .  

The two-soliton solution is associated with 

f i f ( 2 ) =  ~ + ~ ' F I + ~ * Z + K , ~ ~ * I + * ?  (6) 

where cp, = 0, + T , ,  r ,  E R,  0, = - k , x +  w,t, w ,  = k , ( l  - kf)- '  and K I 2  is a function of k ,  
and k,  of the form 

Gibbon et a1 (1976) discuss this solution in a particular region of the ( k ,  , k , )  plane 
( K12 > 0), where it describes the elastic collision of solitary waves with positive ampli- 
tudes (solitons). However, they do not mention that K , ,  can also be negative: it 
vanishes (or becomes infinite) on some particular curves (figure 1). When the vanishing 
of K12 is due to a resonance (3 + k ,  k2 - k: - k:  = 0), the solution is found to represent 

0 1 2 k, 
n 

Figure 1. Inside the shaded regions, K, ,  is strictly positive. Octhe  boundary DAB belonging 
to the ellipse E , ,  K,? is equal to zero, while on the curve Z P  belonging to the ellipse E ,  
and on the branch CPC' of the hyperbole H,, the inverse of K , Z  is zero. E , =  
3 +  k , k 2 -  k:  - k i  = 0. E?= 3 - k , k 2  - k : -  k i  = 0. HI sz 1 - k , k z  = O .  

+ We acknowledge J Eilbeck for bringing this paper to o u r  attention. 
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an inelastic process in which two solitary waves (one with a positive amplitude (soliton) 
and one with a negative amplitude (antisoliton)) fuse into a third wave with negative 
amplitude, or the reverse process (decay). The same two processes can be described 
by a two-soliton solution with 3 - k , k ,  - kf - k: = 0 (( Klz) - '  = 0). We show that the 
MRLW I equation (3) does not possess three-soliton solutions of the Hirota type (§  2 ) .  

In 0 3, we propose a new equation ( M R L W  11) which has the same solitary wave 
solution as equations (1) and (3). We prove that this equation possesses N-soliton 
solutions for arbitrary N. I t  also possesses resonant solutions which, at N = 2 ,  describe 
the same inelastic processes as those obtained with the M R L W  I equation ( 5  4.1). They 
also occur on the elliptic curves 3 * k l k z  - k:  - k: = 0. These special solutions (and 
those obtained with equation (3)) are examples of resonant triads in one space 
dimension involving both solitons and antisolitons. They can be considered as a 
fundamental entity (vertex) for a detailed analysis of an elastic soliton-antisoliton 
collision (see 04.2). We distinguish two basic processes (figure 5 ) ,  each of which 
involves an 'intermediate antisoliton' with a lifetime proportional to Iln KI21. The 
possible occurrence of such an intermediate well (and the fact that it does not occur 
when a soliton collides with another soliton) might be of interest when M R L W  solutions 
are compared with numerical results for the RLW equation (Abdulloev er a1 1976, 
Eilbeck and McGuire 1977, Santarelli 1978, Courtenay Lewis and Tjon 1979, Bona et 
a1 1980, 1985). 

A general discussion of the resonance phenomenon for the M R L W  I 1  equation at 
arbitrary N shows that a regular solution cannot include other vertices than those 
obtained at N = 2 (when N 2 3, the solutions involve a resonant triad plus N - 2 or 
N - 3 'spectator' solitary waves (see 5 4.3)). 

2. First modified RLW equation (MRLW I) 

Given the linear part of equation ( I ) ,  Gibbon et a1 (1976) consider the Hirota 
polynomial 

(8) 

where the derivative operators D, and D, are defined by their action on an ordered 
pair of functions 

F(D, ,  4,) = D,(Dl+ D, - DID:) 

This polynomial operator acting on an ordered pair of two identical functions ( T~ = r2  = 
f) yields the bilinear equation 

that is, 

Equation (3) is obtained by making the transformation f = exp(q) in (1 1) and replacing 
qxl by -U in this result, as suggested by relation (4). 
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According to (9), the operator (8) acts in a simple way on an exponential or on 
ordered pairs of exponentials with arguments linear in x and t :  

F ( D , ,  D,)l.exp(B,) = F ( D , ,  D,) exp(B,).1 = F ( w , ,  k,) exp(8,) 

F ( D , ,  D, )  exp(B1).exp(8,) = F ( w ,  - w,, k, - k,) exp(8, + 0,) .  
(12) 

It is then easy to verify that the one-soliton form ( 5 )  is a solution of equation (10). 
Indeed, the function 

(130) F (  W, k )  = W (  w - k - wk' j 

w ( k ) = k ( l - k ' ) - ' .  (13b) 

Using (12) and  (13a) ,  it is also easy to prove that the two-soliton form (6) is a solution 
of (10) provided that 

(14) 

where w, = w ( k , ) ,  i = 1 ,2 .  In the particular case (13a)  and (13b), K I 2  takes the explicit 
form (7). 

is identica! to zero as a result of the 'dispersion' relation between w and k 

Klz= -F(  W I  - ~ 2 ,  kl - k2)/ F ( w ,  + ~ 2 ,  k l +  k2) 

The existence of a three-soliton form 

(where cp, = 8, + T , ,  i = 1 , 2 , 3 ,  and K,, are obtained from formula (7 )  by setting 1 = i 
and 2 = j )  as a solution of equation ( lo ) ,  is subject to two additional constraints to 
cancel the coefficients of exp(29, + 'p, + cp,) for i # j  f 1 and exp(cp, + 'pz+ cp3) in the L H S  

of equation (10): 

( i )  K 1 2 3 =  K 1 2 K 1 3 K 2 3  (16) 

(the coefficients of other exponential terms are identically zero on account of relations 
(12) and ( 1 3 ~ ) ) .  

The latter condition (171, which involves the actual form of F, cannot be satisfied 
when F(w, k )  has the form (13a). Indeed, setting 

Z i k , , k 2 , k 3 ) = (  C j C l i  123 I k l ( l - k i j ( l - k : )  cycI(1231 ( l -k : j ( l -k2k3)  

x n ( 1 + k,k,)(  ki - k,  )( 3 + k,k, - k ;  - k;) 
l S ! C , ' 3  

the L H S  of relation (17) is equivalent to 

where 

f(kT, k:, k S ) = l ( k l ,  k2, k 3 ) + l ( - k l ,  k:, k 3 ) + I ( k l , - k ? ,  k3)+Z(k , ,  k?,-k3). 
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Using MACSYMA, it is found that in the ( k , ,  k 2 ,  k,) space 

f( k ; ,  k:, k:)  = 4kTkik:( k: - k i ) (  k f  - k : ) ( k :  - k : )  

x (2k f+2k:+2k:  - k f k f  - k f k : -  k ik:  - 3 )  

x ( k f k ; k : +  k:k;k<+ k t k i k : - 6 k f k i k : -  k:-k:- k f :  

- k f k :  - k:k: - k:k: +6k:+6k:+6k: - 9 ) .  

3. Second m o d i f i e d  RLW e q u a t i o n  (MRLW 11) 

Another bilinear equation associated with the linear part of equation ( 1 )  is 

D,( D, + D, - D,D’,)f(x,  t ) . f ( x ,  t )  = 0 

f l y ,  + f l y ,  -ffxx,, + 3 f Y f T Y f  - 3f,f\f  + f A  -fx’ -fJ = 0. (206)  

U , + U , - U ~ , , + ~ ( U ~ ) , + ~ U , Z , = ~  2, = U. (21 )  

(20a)  

which is equivalent to the following quadratic equation in f: 

By taking relation ( 4 )  into account, we obtain for U the evolution equation ( MRLW 11) 

The polynomial in w and k associated with the differential operator of equation (20a)  
is 

Fl , (w,  k )=k(w-k -k ’wq) .  (22 )  

It follows from ( 1 2 )  and (13b)  that equation ( 2 1 )  has (just as equation ( 3 ) )  the same 
solitary wave as the RLW equation and two-soliton solution of the form (6) with 

FII( w1 - w,, k ,  - k2) 
Fll(w1 + ~ 2 ,  k ,  + k,) - ( k ,  + k2)*(3 - k , k > -  k:- k:)’ 

( k ,  - k2)’(3 + klk2 - k: - k:) 
(23)  - K = -  l 2  

Furthermore, we shall prove that ( 2 1 )  possesses N-soliton solutions (for arbitrary 
N > 2 )  of the form 

u””’(x, t )  = -a:, Inf“)(x,  t )  

with 

where cp, = -k,x+ w,t+  r,, w, = k , ( l  - k f ) - ‘ ,  T, E R and 

( k ,  - k,)>(3 + k,k, - k f  - k:) 
l c i < j s N ,  

K” = ( k ,  + k,)2(3 - k,k, - k: - k:) 
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In fact, we should mention that the bilinear equation (20) has already been considered 
by Hirota and Satsuma (1976) but in relation with the evolution equation for the field 
r (x ,  t )  linked to f ( x ,  t )  by r(x ,  t )  = 2d:, I n f ( x ,  1 ) .  Their equation 

(25 )  
differs from ( 2 1 )  by its non-linear part; its solitary wave solutions have always a positive 
amplitude (no antisolitons). Hirota and Satsuma claimed that ( 2 5 )  possesses N-soliton 
solutions. As we have been unable to find a published proof, we shall now show that 
both (21 )  and (25 )  have N-soliton solutions. 

r, + r, - r,,, -3rrr, +3r,z, = 0 r = -2, 

The condition for the existence of a N-soliton solution 

amounts to the condition 

x n (p i k ,  - / . ~ ~ k j ) ~ ( 3  + pip,kikj - k: - k,Z) 
I s i < j  s n 

= O  for n = l , 2 ,  . . . ,  N 
which is proved by the following mathematical induction. 

The function 6'") has the properties: 

( i )  

(ii) 

@ " ) ( k l ,  k 2 , .  . . , k,)  is a symmetric function of k:, k:, . . . , k ;  

@ f l ' ( k l ,  k 2 , .  . . , kn)Ik ,=o= n k f ( 3  - k f )@"-" (k , ,  k 3 , .  . . , k,) 
" 

1=2 

(iii) d ' " ' ( k 1 , k 2 ,  . . . , k n ) l k l = k , = 2 4 k i ( l - k : )  fi (k : -k ; ) '  
J = 3  

x [ ( 3  - k: - k:)' - k :k f ]Q 'n -2 ) (  k ,  , k,, . . . , k ,  ) 

(iv) 6 ' " ' ( k l ,  k 2 , .  . . , k,) = ( 3 + k l k , - k ? -  k : ) ( k ,  - k z ) 2 & n ) ( k l ,  k z , .  . , k,) 
+ ( 3 - k , k , - k f - k : ) ( k , + k , ) " ~ " ' ( k , , - k , , . .  . , I C , , )  

with 

r = 3  

x (3+p,k2k1 - k i -  k f )  
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On the other hand, we see that on the curve 3 - k l  k2 - k: - k: = 0,  the following 
relations are satisfied: 

( U )  WI + W? = W (  kl + k,) 

( b )  ( k l -  p*,k,)'( k2 - ~ , k , ) ~ ( 3  + Flk,kl - k f  - k f ) ( 3  + p,k,kz - k: - k f )  

= [ ( k l +  k2) - p , k , ] * ( [ k f +  ( k ,  + kzj' -3]* - k f (  kl + k2j2) 

x [-3+ ( k l +  kr)2+ k f  - p lk , ( k l  + kz)]  3 s i s n .  

It follows from the above relations that (on the curve 3 - k,k2-  k: - k ;  = 0 )  

@ " ' ( k , ,  k2, . . . , k,  ) 1 3 - k , k 2 - L ; - k ; = 0  = - (3  + klk2 - k: - k:)(  k1- k J 2  

The identity (27 )  is easily verified for n = 1 and n = 2: 

$ " ( k I )  = F (  w , ,  k , )  = 0 

- F (  W I  - w?, k, - k,)F( WI + ~ 2 ,  k l+ k,)] = O .  

We now assume that this identity holds for n - 1 and n -2  ( n  3 3) .  Then, by using 
the properties ( i ) ,  (ii) and (iii) and the result (28) ,  we obtain the factorisation: 

which is also valid for the polynomial 6") 

b ( " ' ( k l ,  k ? , ,  . . , k,)  = $ " ' ( k l ,  k 2 , .  . . , k,)  fi (1 - k f ) .  (30) 
1 - 1  

Thus, according to the form of d(n) (see relation ( 2 7 ) )  and the factorisation property 
(29 ) ,  we see that the degree of the polynomial 6'"' is bounded as follows: 

2n(2n - 1 )  <degree 6("'< 2n'+ 2. ( 3 1 )  

These inequalities imply that 6("'= 0. 

4. Resonant multisoliton interaction for MRLW I1 

If regular, the N-soliton solution (24 )  of (21 )  can describe two kinds of interactions 
(depending on the values of the parameters kij. 

(i)  An ordinary multisoliton interaction (elastic interaction) involving an arbitrary 
number N of solitons or antisolitons. 
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(ii) A resonant interaction involving a resonant triad (one soliton and two anti- 
solitons) in the presence of N - 2 (or N - 3 )  ‘spectator’ solitons (antisolitons). 

As has already been pointed out (Tajiri and  Nishitani 1982, Hirota and Ito 1983, 
Lambert et a1 1987), the resonant interaction of solitons in one space dimension occurs 
on the boundaries of the regularity domain of the solution. 

4.1. The two-soliton solution 

The regularity condition for the two-soliton solution given by the relations ( 4 )  and ( 6 )  
is 

( k ,  - k2)2( 3 + k I k,  - k: - kz )  
( k ,  + k J 2 ( 3  - k , k , -  k : -  k : )  

3 0. K , *  = 

The corresponding regions in the first quadrant of the ( k , ,  k2 )  plane are shown in 
figure 2 (without any loss of generality, we assume k 2 >  k ,  > 0). Inside the shaded 
regions, the solution U(’) describes the elastic soliton-soliton collision (if k ,  < k,< l ) ,  
antisoliton-antisoliton collision (if 1 < k ,  < k,) or  soliton-antisoliton collision (if k ,  < 
1 < k,). More particularly, we distinguish the following cases. 

( i )  If k2 < 1 or k2 > 2,  the interaction between the two solitary waves is always elastic. 
( i i )  If 1 < k2 < 2 ,  the curves 6?B and 3, on which K , ,  = 0 or ( KI2)-I = 0, are the 

Setting k i =  kz* k ,  and w:,= w?* w , ,  one can see, on the curve FP, where 
boundaries of the regularity domain of the two-soliton solution. 

E,( k ,  , kZ) E 3 - kl kz - k: - k: = 0 ( 3 3 )  
that wT2 = w (  k i ) .  This follows from the identity 

n 
In the same way, it follows from this identity that on the curve DAB, where 

we have wY2= ~ ( k ; ) .  
E , (  k l ,  k2) 3 3 + k ,  k ,  - k: - k:  = 0 ( 3 5 )  

n 
Figure 2. Inside the shaded regions, K , ,  is strictly positive. On %e boundary DAB, 
belonging to the ellipse E , ,  K , ,  is equal to zero, while on the curve DP, belonging to the 
ellipse E 2 ,  the inverse of K , ,  is zero. 
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n 
Thus, on the curve DP, we have the relations 

k g  = k ,  + k ,  

w"= w , + w z  
r 

while on the curve DAB, we have 
k2 = k,+ k ,  

(37 )  . ,  
w2= w,+ w,. - 

Taking d 3  s k2 s 2, the points situated on DAB correspond to ( k ,  = k2.* ,  k 2 )  with 

k2,* = f { k z * [ 3 ( 4 -  k;)]I'I}. ( 3 8 )  
We distinguish two possibilities. 
(i) O < k , = k 2 , - < 1  which implies 1 < kR= k2*+ < J 3  

( 3 9 )  and the ordering (see figure 3 )  u , > o >  U > >  v i  
where ui = 1/( 1 - c )  stands for the phase velocity wi/  k i .  

(40) 
(ii) 1 < k l  = k2.+ < J3 

In the first case, the solution u ( ~ )  = -at,, lnf'2'(x, t )  with 

which implies 
u ; > o >  v2> U,. 

0 < kR = k2,- < 1 
and the ordering 

f" '= 1+e',+',+e',+~2 ( 4 1 )  
describes the decay of an  antisoliton (with parameter d 3  < k2 < 2 )  into a soliton and  
an  antisoliton which travel in opposite directions with parameters 0 < k2,- < 1 and 
1 < k2,+ < J 3  satisfying the relation k,  = k2,+ + k2,- (see figure 4 ( a ) ) .  As t +. -a 

u ' ~ ' ( x ,  t )  = k,w, sech2[i( O r  + T ~ ) ]  
4 

and as t++cc 

with k ,  = k2, -  and k i  = kz,+ 

I 
I 
I 
I 
I - l 
I 
I 
I 

- 
z 

k2 - I kz .  k ,  ' rk I I 

Figure 3. The curve represents the function u( k )  = ( 1  - k Z ) - '  in terms of k, for k > 0. The 
value of k2  is 1.95. 
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t =30 

t = -30 

Figure 4. This figure represents the time evolution of the two-soliton solution for K I z  = 0 
( k 2  = 1.95). In ( a )  (k, = k Z , -  = 0.59),  the process corresponds to the decay of an antisoliton 
(with amplitude AZ = -0.34) into a pair soliton-antisoliton (with amplitudes A ,  = 0.13 and 
A,  = -0.54). In ( b )  1 k ,  = kz.+ = 1.36),  the process corresponds to the fusion of a pair 
soliton-antisoliton (with amplitudes A ,  = 0.13 and A, = -0.54) into an antisoliton ( A ,  = 
-0.34). The reference frame is defined by € =  x -  uZf (-6OG EG60).  

In the second case, the solution U") describes the fusion of a soliton and an  
antisoliton (which travel in opposite directions with parameters k 2 , -  and k2,+)  into an  
antisoliton k2 (see figure 4 ( b ) ) .  

In both cases, the total mass M = w 2 ,  which is conserved by the non-linear interac- 
tion, is negative. 

Taking 1 s k2 s J3,  the points situated on c P ( (  Klz)- l= 0) correspond to ( k ,  = 
1 kJ, k 2 )  with 

In  this case, one has 0 < k, = lk2,-I < 1,43  < k': = kz ,+  < 2 and the ordering U, > 0 > U'; > 
v 7 .  

It is easy to see that, with an appropriate choice of the phase parameters T ,  and 
T ~ ,  the solution U ' ? ' ,  with k ,  = lk2,-I, also describes one of the above processes. Thus, 
by taking T, = T I  and T~ = ~ ; - l n  K12 (71 and T ;  constant), one recovers the decay 
process of ( 4 2 )  and ( 4 3 ) ,  whereas by taking T ,  = T ;  -In K I 2  and T> = T ; ,  one recovers 
the (reversed) fusion process. 

4.2. Elastic processes near the boundaries of the regularity domain 

The two inelastic processes shown in figure 4 correspond to solutions taken on the 
boundary of the regularity domain. Each such process can be represented by a 
diagram-a vertex joining two incoming (outgoing) lines with a third outgoing (incom- 
ing) line-which schematises this solution (contour map) in the (x, t )  plane. These 
vertices turn out to be fundamental entities, as much as the soliton itself, for the 
interpretation of elastic soliton-antisoliton interactions (figure 5). 
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I I 
< = x - v , t  < = x - v R  t 

Figure 5. The time evolution of the elastic collision soliton-antisoliton is respectively 
schematised for ( a )  K,,-*O ( [=x-u, f ,  k , =  1.95, k ,  =0.59) and ( b )  K , , + a  ( [ = x - u R 1 ,  
k Z  = 1.36, k ,  = 0.59). hr = f,,, - f,, ,  corresponds to the ‘interaction time‘. - 

For values of k , ,  k, situated near the boundary DAB (K12+0 ,  43 < k 2 < 2 ,  
k ,  + k,,- < I ) ,  the elastic collision of the two waves proceeds by the exchange of an  
intermediate antisoliton ( k R  = kZIT), the lifetime of which is proportional to Iln KI2l. 
During this ‘interaction time’, three separate waves coexist: one well-shaped intermedi- 
ate wave (deeper than the incoming antisoliton) which travels backwards between two 
bell-shaped waves of equal amplitude ( k ,  w 1  > 0) moving forwards. A striking feature 
is that the two incoming waves are recovered as outgoing waves without ever colliding. 
They exchange identities. 

For values of k ,  , k ,  situated near the boundary FP( ( KIJ1  -* 0, 1 < k, < 43, k ,  + 

IkJ) the two incoming waves fuse together to form an intermediate antisoliton (in 
depth smaller than the incoming well-shaped wave) which, after a finite interaction 
time proportional to In K l z ,  decays into the original soliton-antisoliton pair. During 
the interaction time, there is only one (intermediate) wave. 

4.3. The N-soliton regular solutions 

The only regular N-soliton solutions (24 )  are those for which at most one parameter 
k, is situated between 1 and 43 (all the k, being ordered and positive). 

Assuming we have the following ordering: 

k ,  > k ,  -, > , . . > 2 > k/  > k / - l >  J3 > kI-2 > 1 > k/-? > . . . > kl 

k,,= = ;{ k ,  * [ 3 ( 4  - k f  ) I ’  ’} 

( 4 4 )  

and setting 

1 S l S N  (45)  

one has (see figure 6 ( a ) )  

J3>k / - l .+>  k , + >  1 >  k , - >  kl-1,  

and we must further have, to guarantee the regularity of the N-soliton solution ( K , ,  3 0 
for 1 s i < j s N ) ,  that (see figure 6 ( b ) )  
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Figure 6. The regions in the plane k, ,  k, ( k ,  < k, 1 where K, ,  is greater than zero are bounded 
b y t h e t w o e l l i p s e s  E , ( k , , k , )  and  E,(k,,k,).  ( a ) J 3 < k l - , < 2 .  ( b )  1<k,_,<J3. 

The condition (46) implies that 

J 3  < k r - > , +  s k I - ] .  

We then distinguish four possibilities of resonant solutions. 
( i )  If k l - 2 = k l - l , +  (and  k r - 3 < k l _ l , - )  then Kl-z , l - ,=O 

(resonance involving the parameters k I - l ,  kl-* and k r - , , - ) .  
( i i )  If k I - 3 = k I - l , -  (and  k r - 2 > k r - , , + )  then K r - 3 , 1 - 1 = 0  

(resonance involving the parameters k r - l ,  k r - , , +  and k / - 3 ) .  
( i i i )  If k l - 3 = l k l - 2 . - /  (and k l . - 2 , + < k r - l )  then ( K I - 3 , 1 - 2 ) - 1 = 0  

(resonance involving the parameters kr- , , , ,  k I - 2  and k r W 3 ) .  
(iv) I f k l - 2 = k l - l . + a n d  k l - 3 = k l - l , -  t h e n K r _ , , , ~ , = K ~ _ , ~ I ~ , = O a n d ( K ~ _ 3 , , _ 2 ) - ’ = 0  

(resonance involving the parameters k r - ,  , kr-z  and k l - 3 ) .  
In the first three cases, the solution decribes an  inelastic process as shown in figure 

4 (with an appropriate choice of the phases 7r-2  and when ( K I - 3 . 1 - 2 ) - 1  =0)  in the 
presence of N - 2 ‘spectators’. The resonant triad involves two waves of the sequence 
(44) and a third exotic wave. In the last case, the solution also describes an  inelastic 
process of the kind discussed at N = 2 (with an  appropriate choice of the phases T / - ~  

and T / - ~ )  but this time in the presence of N - 3 ‘spectators’. The resonant triad involves 
three waves ( k I - l ,  kl..? and k l - 3 )  of the sequence (44). 
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